3.287 \(\int (e \csc (c+d x))^{5/2} (a+a \sec (c+d x))^2 \, dx\)

Optimal. Leaf size=270 \[ \frac{7 a^2 e^2 \sqrt{\sin (c+d x)} \text{EllipticF}\left (\frac{1}{2} \left (c+d x-\frac{\pi }{2}\right ),2\right ) \sqrt{e \csc (c+d x)}}{3 d}-\frac{4 a^2 e^2 \csc (c+d x) \sqrt{e \csc (c+d x)}}{3 d}-\frac{2 a^2 e^2 \cot (c+d x) \sqrt{e \csc (c+d x)}}{3 d}+\frac{5 a^2 e^2 \tan (c+d x) \sqrt{e \csc (c+d x)}}{3 d}-\frac{2 a^2 e^2 \csc (c+d x) \sec (c+d x) \sqrt{e \csc (c+d x)}}{3 d}+\frac{2 a^2 e^2 \sqrt{\sin (c+d x)} \sqrt{e \csc (c+d x)} \tan ^{-1}\left (\sqrt{\sin (c+d x)}\right )}{d}+\frac{2 a^2 e^2 \sqrt{\sin (c+d x)} \sqrt{e \csc (c+d x)} \tanh ^{-1}\left (\sqrt{\sin (c+d x)}\right )}{d} \]

[Out]

(-2*a^2*e^2*Cot[c + d*x]*Sqrt[e*Csc[c + d*x]])/(3*d) - (4*a^2*e^2*Csc[c + d*x]*Sqrt[e*Csc[c + d*x]])/(3*d) - (
2*a^2*e^2*Csc[c + d*x]*Sqrt[e*Csc[c + d*x]]*Sec[c + d*x])/(3*d) + (2*a^2*e^2*ArcTan[Sqrt[Sin[c + d*x]]]*Sqrt[e
*Csc[c + d*x]]*Sqrt[Sin[c + d*x]])/d + (2*a^2*e^2*ArcTanh[Sqrt[Sin[c + d*x]]]*Sqrt[e*Csc[c + d*x]]*Sqrt[Sin[c
+ d*x]])/d + (7*a^2*e^2*Sqrt[e*Csc[c + d*x]]*EllipticF[(c - Pi/2 + d*x)/2, 2]*Sqrt[Sin[c + d*x]])/(3*d) + (5*a
^2*e^2*Sqrt[e*Csc[c + d*x]]*Tan[c + d*x])/(3*d)

________________________________________________________________________________________

Rubi [A]  time = 0.333941, antiderivative size = 270, normalized size of antiderivative = 1., number of steps used = 15, number of rules used = 13, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.52, Rules used = {3878, 3872, 2873, 2636, 2641, 2564, 325, 329, 212, 206, 203, 2570, 2571} \[ -\frac{4 a^2 e^2 \csc (c+d x) \sqrt{e \csc (c+d x)}}{3 d}-\frac{2 a^2 e^2 \cot (c+d x) \sqrt{e \csc (c+d x)}}{3 d}+\frac{5 a^2 e^2 \tan (c+d x) \sqrt{e \csc (c+d x)}}{3 d}-\frac{2 a^2 e^2 \csc (c+d x) \sec (c+d x) \sqrt{e \csc (c+d x)}}{3 d}+\frac{2 a^2 e^2 \sqrt{\sin (c+d x)} \sqrt{e \csc (c+d x)} \tan ^{-1}\left (\sqrt{\sin (c+d x)}\right )}{d}+\frac{2 a^2 e^2 \sqrt{\sin (c+d x)} \sqrt{e \csc (c+d x)} \tanh ^{-1}\left (\sqrt{\sin (c+d x)}\right )}{d}+\frac{7 a^2 e^2 \sqrt{\sin (c+d x)} F\left (\left .\frac{1}{2} \left (c+d x-\frac{\pi }{2}\right )\right |2\right ) \sqrt{e \csc (c+d x)}}{3 d} \]

Antiderivative was successfully verified.

[In]

Int[(e*Csc[c + d*x])^(5/2)*(a + a*Sec[c + d*x])^2,x]

[Out]

(-2*a^2*e^2*Cot[c + d*x]*Sqrt[e*Csc[c + d*x]])/(3*d) - (4*a^2*e^2*Csc[c + d*x]*Sqrt[e*Csc[c + d*x]])/(3*d) - (
2*a^2*e^2*Csc[c + d*x]*Sqrt[e*Csc[c + d*x]]*Sec[c + d*x])/(3*d) + (2*a^2*e^2*ArcTan[Sqrt[Sin[c + d*x]]]*Sqrt[e
*Csc[c + d*x]]*Sqrt[Sin[c + d*x]])/d + (2*a^2*e^2*ArcTanh[Sqrt[Sin[c + d*x]]]*Sqrt[e*Csc[c + d*x]]*Sqrt[Sin[c
+ d*x]])/d + (7*a^2*e^2*Sqrt[e*Csc[c + d*x]]*EllipticF[(c - Pi/2 + d*x)/2, 2]*Sqrt[Sin[c + d*x]])/(3*d) + (5*a
^2*e^2*Sqrt[e*Csc[c + d*x]]*Tan[c + d*x])/(3*d)

Rule 3878

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.)*((g_.)*sec[(e_.) + (f_.)*(x_)])^(p_), x_Symbol] :> Dist[g^Int
Part[p]*(g*Sec[e + f*x])^FracPart[p]*Cos[e + f*x]^FracPart[p], Int[(a + b*Csc[e + f*x])^m/Cos[e + f*x]^p, x],
x] /; FreeQ[{a, b, e, f, g, m, p}, x] &&  !IntegerQ[p]

Rule 3872

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.), x_Symbol] :> Int[((g*C
os[e + f*x])^p*(b + a*Sin[e + f*x])^m)/Sin[e + f*x]^m, x] /; FreeQ[{a, b, e, f, g, p}, x] && IntegerQ[m]

Rule 2873

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*
(x_)])^(m_), x_Symbol] :> Int[ExpandTrig[(g*cos[e + f*x])^p, (d*sin[e + f*x])^n*(a + b*sin[e + f*x])^m, x], x]
 /; FreeQ[{a, b, d, e, f, g, n, p}, x] && EqQ[a^2 - b^2, 0] && IGtQ[m, 0]

Rule 2636

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(Cos[c + d*x]*(b*Sin[c + d*x])^(n + 1))/(b*d*(n +
1)), x] + Dist[(n + 2)/(b^2*(n + 1)), Int[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1
] && IntegerQ[2*n]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2564

Int[cos[(e_.) + (f_.)*(x_)]^(n_.)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[1/(a*f), Subst[Int[
x^m*(1 - x^2/a^2)^((n - 1)/2), x], x, a*Sin[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n - 1)/2] &&
 !(IntegerQ[(m - 1)/2] && LtQ[0, m, n])

Rule 325

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(a*
c*(m + 1)), x] - Dist[(b*(m + n*(p + 1) + 1))/(a*c^n*(m + 1)), Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; Free
Q[{a, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 212

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b), 2]
]}, Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&
 !GtQ[a/b, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 2570

Int[(cos[(e_.) + (f_.)*(x_)]*(b_.))^(n_)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[((b*Cos[e + f
*x])^(n + 1)*(a*Sin[e + f*x])^(m + 1))/(a*b*f*(m + 1)), x] + Dist[(m + n + 2)/(a^2*(m + 1)), Int[(b*Cos[e + f*
x])^n*(a*Sin[e + f*x])^(m + 2), x], x] /; FreeQ[{a, b, e, f, n}, x] && LtQ[m, -1] && IntegersQ[2*m, 2*n]

Rule 2571

Int[(cos[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*((b_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[((b*Sin[e +
f*x])^(n + 1)*(a*Cos[e + f*x])^(m + 1))/(a*b*f*(m + 1)), x] + Dist[(m + n + 2)/(a^2*(m + 1)), Int[(b*Sin[e + f
*x])^n*(a*Cos[e + f*x])^(m + 2), x], x] /; FreeQ[{a, b, e, f, n}, x] && LtQ[m, -1] && IntegersQ[2*m, 2*n]

Rubi steps

\begin{align*} \int (e \csc (c+d x))^{5/2} (a+a \sec (c+d x))^2 \, dx &=\left (e^2 \sqrt{e \csc (c+d x)} \sqrt{\sin (c+d x)}\right ) \int \frac{(a+a \sec (c+d x))^2}{\sin ^{\frac{5}{2}}(c+d x)} \, dx\\ &=\left (e^2 \sqrt{e \csc (c+d x)} \sqrt{\sin (c+d x)}\right ) \int \frac{(-a-a \cos (c+d x))^2 \sec ^2(c+d x)}{\sin ^{\frac{5}{2}}(c+d x)} \, dx\\ &=\left (e^2 \sqrt{e \csc (c+d x)} \sqrt{\sin (c+d x)}\right ) \int \left (\frac{a^2}{\sin ^{\frac{5}{2}}(c+d x)}+\frac{2 a^2 \sec (c+d x)}{\sin ^{\frac{5}{2}}(c+d x)}+\frac{a^2 \sec ^2(c+d x)}{\sin ^{\frac{5}{2}}(c+d x)}\right ) \, dx\\ &=\left (a^2 e^2 \sqrt{e \csc (c+d x)} \sqrt{\sin (c+d x)}\right ) \int \frac{1}{\sin ^{\frac{5}{2}}(c+d x)} \, dx+\left (a^2 e^2 \sqrt{e \csc (c+d x)} \sqrt{\sin (c+d x)}\right ) \int \frac{\sec ^2(c+d x)}{\sin ^{\frac{5}{2}}(c+d x)} \, dx+\left (2 a^2 e^2 \sqrt{e \csc (c+d x)} \sqrt{\sin (c+d x)}\right ) \int \frac{\sec (c+d x)}{\sin ^{\frac{5}{2}}(c+d x)} \, dx\\ &=-\frac{2 a^2 e^2 \cot (c+d x) \sqrt{e \csc (c+d x)}}{3 d}-\frac{2 a^2 e^2 \csc (c+d x) \sqrt{e \csc (c+d x)} \sec (c+d x)}{3 d}+\frac{1}{3} \left (a^2 e^2 \sqrt{e \csc (c+d x)} \sqrt{\sin (c+d x)}\right ) \int \frac{1}{\sqrt{\sin (c+d x)}} \, dx+\frac{1}{3} \left (5 a^2 e^2 \sqrt{e \csc (c+d x)} \sqrt{\sin (c+d x)}\right ) \int \frac{\sec ^2(c+d x)}{\sqrt{\sin (c+d x)}} \, dx+\frac{\left (2 a^2 e^2 \sqrt{e \csc (c+d x)} \sqrt{\sin (c+d x)}\right ) \operatorname{Subst}\left (\int \frac{1}{x^{5/2} \left (1-x^2\right )} \, dx,x,\sin (c+d x)\right )}{d}\\ &=-\frac{2 a^2 e^2 \cot (c+d x) \sqrt{e \csc (c+d x)}}{3 d}-\frac{4 a^2 e^2 \csc (c+d x) \sqrt{e \csc (c+d x)}}{3 d}-\frac{2 a^2 e^2 \csc (c+d x) \sqrt{e \csc (c+d x)} \sec (c+d x)}{3 d}+\frac{2 a^2 e^2 \sqrt{e \csc (c+d x)} F\left (\left .\frac{1}{2} \left (c-\frac{\pi }{2}+d x\right )\right |2\right ) \sqrt{\sin (c+d x)}}{3 d}+\frac{5 a^2 e^2 \sqrt{e \csc (c+d x)} \tan (c+d x)}{3 d}+\frac{1}{6} \left (5 a^2 e^2 \sqrt{e \csc (c+d x)} \sqrt{\sin (c+d x)}\right ) \int \frac{1}{\sqrt{\sin (c+d x)}} \, dx+\frac{\left (2 a^2 e^2 \sqrt{e \csc (c+d x)} \sqrt{\sin (c+d x)}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{x} \left (1-x^2\right )} \, dx,x,\sin (c+d x)\right )}{d}\\ &=-\frac{2 a^2 e^2 \cot (c+d x) \sqrt{e \csc (c+d x)}}{3 d}-\frac{4 a^2 e^2 \csc (c+d x) \sqrt{e \csc (c+d x)}}{3 d}-\frac{2 a^2 e^2 \csc (c+d x) \sqrt{e \csc (c+d x)} \sec (c+d x)}{3 d}+\frac{7 a^2 e^2 \sqrt{e \csc (c+d x)} F\left (\left .\frac{1}{2} \left (c-\frac{\pi }{2}+d x\right )\right |2\right ) \sqrt{\sin (c+d x)}}{3 d}+\frac{5 a^2 e^2 \sqrt{e \csc (c+d x)} \tan (c+d x)}{3 d}+\frac{\left (4 a^2 e^2 \sqrt{e \csc (c+d x)} \sqrt{\sin (c+d x)}\right ) \operatorname{Subst}\left (\int \frac{1}{1-x^4} \, dx,x,\sqrt{\sin (c+d x)}\right )}{d}\\ &=-\frac{2 a^2 e^2 \cot (c+d x) \sqrt{e \csc (c+d x)}}{3 d}-\frac{4 a^2 e^2 \csc (c+d x) \sqrt{e \csc (c+d x)}}{3 d}-\frac{2 a^2 e^2 \csc (c+d x) \sqrt{e \csc (c+d x)} \sec (c+d x)}{3 d}+\frac{7 a^2 e^2 \sqrt{e \csc (c+d x)} F\left (\left .\frac{1}{2} \left (c-\frac{\pi }{2}+d x\right )\right |2\right ) \sqrt{\sin (c+d x)}}{3 d}+\frac{5 a^2 e^2 \sqrt{e \csc (c+d x)} \tan (c+d x)}{3 d}+\frac{\left (2 a^2 e^2 \sqrt{e \csc (c+d x)} \sqrt{\sin (c+d x)}\right ) \operatorname{Subst}\left (\int \frac{1}{1-x^2} \, dx,x,\sqrt{\sin (c+d x)}\right )}{d}+\frac{\left (2 a^2 e^2 \sqrt{e \csc (c+d x)} \sqrt{\sin (c+d x)}\right ) \operatorname{Subst}\left (\int \frac{1}{1+x^2} \, dx,x,\sqrt{\sin (c+d x)}\right )}{d}\\ &=-\frac{2 a^2 e^2 \cot (c+d x) \sqrt{e \csc (c+d x)}}{3 d}-\frac{4 a^2 e^2 \csc (c+d x) \sqrt{e \csc (c+d x)}}{3 d}-\frac{2 a^2 e^2 \csc (c+d x) \sqrt{e \csc (c+d x)} \sec (c+d x)}{3 d}+\frac{2 a^2 e^2 \tan ^{-1}\left (\sqrt{\sin (c+d x)}\right ) \sqrt{e \csc (c+d x)} \sqrt{\sin (c+d x)}}{d}+\frac{2 a^2 e^2 \tanh ^{-1}\left (\sqrt{\sin (c+d x)}\right ) \sqrt{e \csc (c+d x)} \sqrt{\sin (c+d x)}}{d}+\frac{7 a^2 e^2 \sqrt{e \csc (c+d x)} F\left (\left .\frac{1}{2} \left (c-\frac{\pi }{2}+d x\right )\right |2\right ) \sqrt{\sin (c+d x)}}{3 d}+\frac{5 a^2 e^2 \sqrt{e \csc (c+d x)} \tan (c+d x)}{3 d}\\ \end{align*}

Mathematica [C]  time = 3.74815, size = 195, normalized size = 0.72 \[ -\frac{a^2 e^2 \cos ^4\left (\frac{1}{2} (c+d x)\right ) \tan (c+d x) \sqrt{e \csc (c+d x)} \sec ^4\left (\frac{1}{2} \csc ^{-1}(\csc (c+d x))\right ) \left (7 \sqrt{-\cot ^2(c+d x)} \text{Hypergeometric2F1}\left (\frac{1}{4},\frac{1}{2},\frac{5}{4},\csc ^2(c+d x)\right )+4 \csc ^2(c+d x)+4 \sqrt{\cos ^2(c+d x)} \csc ^2(c+d x)+6 \sqrt{\cos ^2(c+d x)} \sqrt{\csc (c+d x)} \tan ^{-1}\left (\sqrt{\csc (c+d x)}\right )-6 \sqrt{\cos ^2(c+d x)} \sqrt{\csc (c+d x)} \tanh ^{-1}\left (\sqrt{\csc (c+d x)}\right )-7\right )}{3 d} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(e*Csc[c + d*x])^(5/2)*(a + a*Sec[c + d*x])^2,x]

[Out]

-(a^2*e^2*Cos[(c + d*x)/2]^4*Sqrt[e*Csc[c + d*x]]*(-7 + 6*ArcTan[Sqrt[Csc[c + d*x]]]*Sqrt[Cos[c + d*x]^2]*Sqrt
[Csc[c + d*x]] - 6*ArcTanh[Sqrt[Csc[c + d*x]]]*Sqrt[Cos[c + d*x]^2]*Sqrt[Csc[c + d*x]] + 4*Csc[c + d*x]^2 + 4*
Sqrt[Cos[c + d*x]^2]*Csc[c + d*x]^2 + 7*Sqrt[-Cot[c + d*x]^2]*Hypergeometric2F1[1/4, 1/2, 5/4, Csc[c + d*x]^2]
)*Sec[ArcCsc[Csc[c + d*x]]/2]^4*Tan[c + d*x])/(3*d)

________________________________________________________________________________________

Maple [C]  time = 0.272, size = 730, normalized size = 2.7 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*csc(d*x+c))^(5/2)*(a+a*sec(d*x+c))^2,x)

[Out]

1/6*a^2/d*2^(1/2)*(-1+cos(d*x+c))*(5*I*sin(d*x+c)*cos(d*x+c)*EllipticF(((I*cos(d*x+c)+sin(d*x+c)-I)/sin(d*x+c)
)^(1/2),1/2*2^(1/2))*((-I*cos(d*x+c)+sin(d*x+c)+I)/sin(d*x+c))^(1/2)*((I*cos(d*x+c)+sin(d*x+c)-I)/sin(d*x+c))^
(1/2)*(-I*(-1+cos(d*x+c))/sin(d*x+c))^(1/2)-6*I*sin(d*x+c)*cos(d*x+c)*EllipticPi(((I*cos(d*x+c)+sin(d*x+c)-I)/
sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*((-I*cos(d*x+c)+sin(d*x+c)+I)/sin(d*x+c))^(1/2)*((I*cos(d*x+c)+sin(d*
x+c)-I)/sin(d*x+c))^(1/2)*(-I*(-1+cos(d*x+c))/sin(d*x+c))^(1/2)-6*I*sin(d*x+c)*cos(d*x+c)*EllipticPi(((I*cos(d
*x+c)+sin(d*x+c)-I)/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*((-I*cos(d*x+c)+sin(d*x+c)+I)/sin(d*x+c))^(1/2)*(
(I*cos(d*x+c)+sin(d*x+c)-I)/sin(d*x+c))^(1/2)*(-I*(-1+cos(d*x+c))/sin(d*x+c))^(1/2)+6*sin(d*x+c)*cos(d*x+c)*El
lipticPi(((I*cos(d*x+c)+sin(d*x+c)-I)/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*((-I*cos(d*x+c)+sin(d*x+c)+I)/s
in(d*x+c))^(1/2)*((I*cos(d*x+c)+sin(d*x+c)-I)/sin(d*x+c))^(1/2)*(-I*(-1+cos(d*x+c))/sin(d*x+c))^(1/2)-6*sin(d*
x+c)*cos(d*x+c)*EllipticPi(((I*cos(d*x+c)+sin(d*x+c)-I)/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*((-I*cos(d*x+
c)+sin(d*x+c)+I)/sin(d*x+c))^(1/2)*((I*cos(d*x+c)+sin(d*x+c)-I)/sin(d*x+c))^(1/2)*(-I*(-1+cos(d*x+c))/sin(d*x+
c))^(1/2)+7*cos(d*x+c)*2^(1/2)-3*2^(1/2))*(e/sin(d*x+c))^(5/2)*(cos(d*x+c)+1)^2/sin(d*x+c)/cos(d*x+c)

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*csc(d*x+c))^(5/2)*(a+a*sec(d*x+c))^2,x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (a^{2} e^{2} \csc \left (d x + c\right )^{2} \sec \left (d x + c\right )^{2} + 2 \, a^{2} e^{2} \csc \left (d x + c\right )^{2} \sec \left (d x + c\right ) + a^{2} e^{2} \csc \left (d x + c\right )^{2}\right )} \sqrt{e \csc \left (d x + c\right )}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*csc(d*x+c))^(5/2)*(a+a*sec(d*x+c))^2,x, algorithm="fricas")

[Out]

integral((a^2*e^2*csc(d*x + c)^2*sec(d*x + c)^2 + 2*a^2*e^2*csc(d*x + c)^2*sec(d*x + c) + a^2*e^2*csc(d*x + c)
^2)*sqrt(e*csc(d*x + c)), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*csc(d*x+c))**(5/2)*(a+a*sec(d*x+c))**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (e \csc \left (d x + c\right )\right )^{\frac{5}{2}}{\left (a \sec \left (d x + c\right ) + a\right )}^{2}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*csc(d*x+c))^(5/2)*(a+a*sec(d*x+c))^2,x, algorithm="giac")

[Out]

integrate((e*csc(d*x + c))^(5/2)*(a*sec(d*x + c) + a)^2, x)